Trigger vs. Substrate: Multi-Dimensional Modulation of QT-Prolongation Associated Arrhythmic Dynamics by a hERG Channel Activator

نویسندگان

  • Michael A. Colman
  • Erick A. Perez Alday
  • Arun V. Holden
  • Alan P. Benson
چکیده

Background: Prolongation of the QT interval of the electrocardiogram (ECG), underlain by prolongation of the action potential duration (APD) at the cellular level, is linked to increased vulnerability to cardiac arrhythmia. Pharmacological management of arrhythmia associated with QT prolongation is typically achieved through attempting to restore APD to control ranges, reversing the enhanced vulnerability to Ca2+-dependent afterdepolarisations (arrhythmia triggers) and increased transmural dispersion of repolarisation (arrhythmia substrate) associated with APD prolongation. However, such pharmacological modulation has been demonstrated to have limited effectiveness. Understanding the integrative functional impact of pharmacological modulation requires simultaneous investigation of both the trigger and substrate. Methods: We implemented a multi-scale (cell and tissue) in silico approach using a model of the human ventricular action potential, integrated with a model of stochastic 3D spatiotemporal Ca2+ dynamics, and parameter modification to mimic prolonged QT conditions. We used these models to examine the efficacy of the hERG activator MC-II-157c in restoring APD to control ranges, examined its effects on arrhythmia triggers and substrates, and the interaction of these arrhythmia triggers and substrates. Results: QT prolongation conditions promoted the development of spontaneous release events underlying afterdepolarisations during rapid pacing. MC-II-157c applied to prolonged QT conditions shortened the APD, inhibited the development of afterdepolarisations and reduced the probability of afterdepolarisations manifesting as triggered activity in single cells. In tissue, QT prolongation resulted in an increased transmural dispersion of repolarisation, which manifested as an increased vulnerable window for uni-directional conduction block. In some cases, MC-II-157c further increased the vulnerable window through its effects on INa. The combination of stochastic release event modulation and transmural dispersion of repolarisation modulation by MC-II-157c resulted in an integrative behavior wherein the arrhythmia trigger is reduced but the arrhythmia substrate is increased, leading to variable and non-linear overall vulnerability to arrhythmia. Conclusion: The relative balance of reduced trigger and increased substrate underlies a multi-dimensional role of MC-II-157c in modulation of cardiac arrhythmia vulnerability associated with prolonged QT interval.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Analysis of the Mode of Action of Disopyramide and Quinidine on hERG-Linked Short QT Syndrome in Human Ventricles

The short QT syndrome (SQTS) is a rare cardiac disorder associated with arrhythmias and sudden death. Gain-of-function mutations to potassium channels mediating the rapid delayed rectifier current, IKr, underlie SQTS variant 1 (SQT1), in which treatment with Na+ and K+ channel blocking class Ia anti-arrhythmic agents has demonstrated some efficacy. This study used computational modeling to gain...

متن کامل

CardiaC toxiCity herg

One of the major reasons of drug withdrawal or drug label revision is the drug induced sudden cardiac death associated with a prolongation of the QT interval in the electrocardiogram (ECG). When the QT interval is prolonged, there is an increased risk of ventricular tachyarrhythmia, including the life threatening form torsade de pointes. The QT interval of the ECG is a measure of the duration o...

متن کامل

Discovery of a small molecule activator of the human ether-a-go-go-related gene (HERG) cardiac K+ channel.

Many drugs inhibit the human ether-a-go-go-related gene (HERG) cardiac K+ channel. This leads to action potential prolongation on the cellular level, a prolongation of the QT interval on the electrocardiogram, and sometimes cardiac arrhythmia. To date, no activators of this channel have been reported. Here, we describe the in vitro electrophysiological effects of (3R,4R)-4-[3-(6-methoxyquinolin...

متن کامل

Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials

BACKGROUND AND PURPOSE Understanding drug effects on the heart is key to safety pharmacology assessment and anti-arrhythmic therapy development. Here our goal is to demonstrate the ability of computational models to simulate the effect of drug action on the electrical activity of the heart, at the level of the ion-channel, cell, heart and ECG body surface potential. EXPERIMENTAL APPROACH We u...

متن کامل

Biophysical characterization of the short QT mutation hERG-N588K reveals a mixed gain-and loss-of-function.

The short QT syndrome is a newly discovered pro-arrhythmic condition, which may cause ventricular fibrillation and sudden death. Short QT can originate from the apparent gain-of-function mutation N588K in the hERG potassium channel that conducts repolarising I(Kr) current. The present study describes a profound biophysical characterization of HERG-N588K revealing both loss-of-function and gain-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017